

A.D.M. COLLEGE FOR WOMEN (Autonomous) Affiliated to Bharathidasan University (Nationally Accredited with "A" Grade by NAAC – 3rd Cycle) NAGAPATTINAM 611 001.

LOCAL/NATIONAL/REGIONAL/GLOBAL RELEVANCE PG AND RESEARCH DEPARTMENT OF MATHEMATICS

Programme: B.Sc Mathematics

Year: 2021-2022

Course Code	Title of the Course	Local/Regional/ National /Global	Rationale	PSOsCognitiveAddressedLevel
MUA	Differential Calculus and Trigonometry	Local , Regional, National & Global	Application of mathematics in various disciplines	 CO1:Apply Leibnitz's Theorem for finding the nth derivative of product of functions. PSO2,3,4 U
				CO2: Evaluate envelopes and curvatures of plane curves.

				CO 3: Compute maxima and minima of plane curves	U
				 CO 4: Interpret the relation between circular and PSO1,2,3,4 hyperbolic functions 	U
				 CO 5: Find the sum of infinite series using appropriate PSO1,2,3,4 methods 	U
MUB	Classical Algebra	Local , Regional, National & Global	To get more depth in basic topics	• CO 1: Understand the aspects of classical PSO2 algebraic structures	U,KN

				• CO 2: Find the nature of the roots of the equations	PSO3	KN,AN,E
				• CO3: Solve and apply the inequalities.	PSO3	E,AN,AP
				• CO 4: Find the inverse and rank of the matrix	PS02,3	E,AP
				• CO5: Calculate the Eigen values and vectors of a matrix and apply the C-H theorem for finding the inverse of a matrix	PSO2,3,4	E,AP
MUC	Integral Calculus	Local , Regional, National & Global	Applicationofmathematicsinchemistryisinculcated.	• CO1: Find the solutions of the integral.	PSO2,3	CN,E

				• CO2: Solve the integration by parts.	PSO2,3	Е
				• CO3: Find the area of plane curves using Cartesian and polar coordinates	PSO2,3,1,5	KN,E
				• CO4: Find the area by changing the given order of integration	PSO 2,3	U,KN,E
				• CO5: understand the concepts of Beta and Gamma functions	PSO 2,3	U,KN,E
MUD	Analytical Geometry of Three Dimensions	Local , Regional, National & Global	Better application knowledge	• CO 1: understand the three dimensional space, angle between lines and planes.	PSO1,3,4,5	U
	Dimensions			 CO2: Find the coplanar lines, skew lines and to find shortest distance between them. 	PS01,3,4,5	АР

				•	CO 3: Formulate the equation of sphere and their properties.	PS01,3,4,5	АР
				•	CO4:Formtheequationofconewithaconicasguidingcurveandthe tangent lines.	PSO1,3,4,5	АР
				•	CO 5: retrieve the equation of cylinder and right circular cylinder.	PSO1,3,4,5	АР
MUE	Differential Equations and Laplace Transforms	Local , Regional, National & Global	Application of Differential equations and Laplace transforms are vast.	•	CO 1: Solve the higher order linear differential equations with constant coefficients.	PSO2,3,4	KN,EN
				•	CO 2: Solve differential equations by using	PSO2,3,4	CN,EN

				method of variation of parameters	
				 CO 3: Find solutions of first order partial differential equations of the standard forms 	KN,CN,EN
				 CO 4: Solve the PDE's using Charpit's PSO1,3 method. 	U,KN,EN
				 CO 5: apply the techniques of Laplace transform PSO2,3,4 and inverse Laplace transform 	U,CN,KN,EN
MUF	Vector Calculus and Fourier Series	Local , Regional, National & Global	To get more depth in basic Mathematical concepts.	 CO 1: Explain the concepts of differentiation of vector field. 	U,C,KN

		• CO 2: Integrate the vector functions over curves and surfaces.	PS01,2,3,4	U,E
		 CO 3: Compute integrals using Green's theorem, Stoke's theorem and the divergence theorem. 	PSO1,2,3,4	U,E,AP
		 CO4: Solve the wave equations, Laplace equations using Fourier series 	PSO1,2,3,5	U,E,AP
		• CO5: Derive the fourier series to the periodic signals in half range.	PSO1,2,3,5	U,E,AP

MUG	Sequences and Series	Local , Regional, National & Global	To meet the current requirements and concentrate more	• CO 1: Find the convergence of sequences	PSO4	U,E
	oriento proble	on application oriented problems	• CO 2: Evaluate the limits and describe the behavior of monotonic sequences	PSO1,2,3, 4	U,E,CN	
				 CO 3: Interpret the concepts of subsequences and Cauchy sequences. 	PSO1,2,3, 4	U,CN,KN
				 CO 4: Discuss the convergence or divergence of series using various tests 	PSO1,2,3, 5	U,AN
				• CO 5: Compute the absolute convergence of series.	PSO1,2,3,5	KN,E

MUH	Number Theory	Local , Regional, National & Global	To highlight the nuances in the world of numbers	CO 1: Find the divisor, sum and product of a given natural number CO 1: Find the divisor, PSO2,3,4 CN,EN
				 CO 2: Gain the knowledge of number theoretic functions
				CO 3: Interpret the famous conjectures in PSO2,3,4 CN,AN number theory
				 CO 4: Solve the system of linear congruence using the Chinese remainder theorem. PSO1,2,3,4 CN,EN
				 CO 5: Apply the law quadratic reciprocity classify numbers as pSO1,2,3,4 AN,AP,EN quadratic residues quadratic non- residues Ladratic non- residues Ladratic non- residues

MUI	Algebra	Local , Regional, National & Global	To get Knowledge of pure mathematics	 CO1:Gain the knowledge of sets, mapping, relations, PSO2,4,5 groups and subgroups.
				 CO2:Interpret the notion of normal groups and isomorphism.
				 CO 3: Analyze the concepts of homomorphism and PSO2,4 U,AN isomorphism for rings and field.
				 CO 4: Recognize the facts of vector space and linear independence.
				 CO 5: Calculate the basis, dimension, PSO2,4 U,E matrix of the linear

				transformation and inner product space		
MUJ	MUJ Real Analysis Local , Regional, National & Global	To get more depth in basic topics.	 CO1: Gain the knowledge of sets, mapping, relations, groups and subgroups. 	PSO2,4,5	U,KN	
			• CO2:Interpret the notion of normal groups and isomorphism.	PS02,4	U,C	
		• CO3: Analyze the concepts of homomorphism and isomorphism for rings and field.	PSO2,4	U,AN		
				• CO4: Recognize the facts of vector space and linear independence.	PSO1,2,3,4	U,C

				CO5: calculate the basis, dimension, matrix of the linear transformation and inner product space	PS02,4	U,E
MUK	MUK Mechanics Local, Regional, Mo National & is Global ma	More preference is given for pure mathematics	• CO 1: Apply the order completeness property.	PSO2,3,4	AN,KN	
				• CO 2: Differentiate the continuity and discontinuity of functions.	PSO1,2,3,45	E,AN,AP
			• CO 3: Find the derivative of a given function.	PSO 1,3,4,5	E,AN,AP	
			• CO 4: Demonstrate the mean value theorems.	PS01,2,3,4	E,AN,AP,KN	
				• CO 5: I interpret the integer ability of functions	PSO1,3,4,5	E,AN,AP,KN,C

MUE3	MUE3 Operations Local, Regional, Latest regional Research National & Global needed for level concept	Latest reference needed for higher level concepts.	•	CO 1: Apply the order completeness property.	PS03,5	UN,KN	
				•	CO 2: differentiate the continuity and discontinuity of functions.	PS01,2,3,4	KN, CN
				•	CO 3: Find the derivative of a given function.	PSO 3,4	KN, CN
				•	CO 4: Demonstrate the mean value theorems.	PS02,3	CN,EN,AN
				•	CO 5: Interpret the integrality of functions	PSO1,2,3,4	CN,AN
MUL	Complex Analysis	Local , Regional, National & Global	To get the Knowledge of Analysis.	•	CO 1: Understand the basic concepts of Cauchy-Riemann equations in Cartesian and polar coordinates.	PSO2,3,4	AN,E,KN,AP

		 CO 2: Interpret the analytic functions, harmonic functions, elementary and bilinear transformation concepts. 	PSO2,3,4	AN,E,KN,AP
		• CO 3: Apply the theorems using complex integration.	PSO1,2,3,4,5	AP,AN,E
		• CO 4: Expand the Taylor's and Laurent's series of functions.	PSO1,2,3,4,5	AN,AP,E,KN
		• CO 5: solve the definite integrals using the concepts of residues.	PSO1,2,3,4	E,AN,AP,KN

MUM & Numerical Lo MUNY Methods with C Programming (Theory & P)	Numerical Methods with C Programming (Theory & P)	Local , Regional, National & Global	For efficient project task completion and data analysis	• CO 1: Find the variables, constants, expressions and operators.	PSO2,4,5	U,KN
			• CO 2: Use functions and arrays.	PSO2	U,KN	
				CO 3: Write the programmes on arithmetic operations and recursion.	PSO2,5	U,AP,KN
				• CO 4: Evaluate the linear equations and matrices numerically.	PSO2	U,AP
				 CO 5: Solve simultaneous system of equations using numerical techniques. 	PSO2	U,AP

MUO	Astronomy	Local , Regional, National & Global	To know about the celestial objects.	 CO1: Perform calculations on celestial bodies. 	PSO1,3,4	U
				• CO 2: Compare our galaxy with other galaxies.	PSO1,3,4	U
				• CO 3: apply the principles and fundamental techniques of the astronomy.	PS01,5	АР
				• CO 4: Analyze the size, age structure and motion of the universe over all using cosmological models.	PSO1,3,4	AN

				CO 5: Understand the phases of moon and occurrence of PSO1,3,4 Eclipses.	U
MUE4	Processes	Local , Regional, National & Global	To know about real world applications	 CO 1: Analyze and solve linear programming models of real life situations 	CN,EN
				 CO 2: Understand the problem solving method of Simplex and Big M Method. 	EN
				 CO 3: Exhibit the applications of Transportation Problem. 	5 KN,EN

				•	CO 4: Solve Assignment problems.	PSO2,3	U,KN,EN
				•	CO 5: Use PERT and CPM techniques in solving Network Analysis problems	PSO2,3	U,KN,EN
MUE5	Graph Theory	eory Local , Regional, National & Global	To emphasize its applications.	5 •	CO 1: Understand the basic concepts of Formal Languages.	PSO 2	KN,AN
				•	CO 2: Permutations and Combinations.	PSO1	KN,AN
				•	CO3:AcquireknowledgeaboutFinite State Machines	PSO4	AN,AP
				•	CO4: Understand Numeric Functions	PSO4	AN,AP
				•	CO5: Understand Recurrence Relations.	PS01	AN,E

A.D.M. COLLEGE FOR WOMEN (Autonomous) Affiliated to Bharathidasan University (Nationally Accredited with "A" Grade by NAAC – 3rd Cycle) NAGAPATTINAM 611 001.

LOCAL/NATIONAL/REGIONAL/GLOBAL RELEVANCE PG AND RESEARCH DEPARTMENT OF MATHEMATICS

Programme: M.Sc., Mathematics

Year: 2021-2022

Course Code	Title of the Course	Local/Regional/ National /Global	Rationale	Course Outcomes	PSOs Addressed	Cognitive Level
PGMA	Algebra	Local , Regional, National & Global	Standard knowledge of algebra for global scenario	• CO1:Understand Sylow's theorem and its applications.	PSO2	An
				• CO2:Analyze the various types of polynomials.	PSO1	An

				• CO3:Develop the knowledge about modules.	PSO2	Ар
				 CO4:Evaluate the roots and characteristics of polynomials. 	PSO1	An
				• CO5:Apply finite fields in Galois Theory	PSO1 PSO2	An & Ap
GMB	Real Analysis	Local , Regional, National & Global	To get the Knowledge of Analysis.	• CO1:Acquire the basic topological properties on metric spaces.	PSO1	U

				• CO2:Interpret the continuity and discontinuity of functions.	PSO1	U
				• CO3:Analyze the Riemann - Stieltjes integral and their properties.	PSO1	AN
				• CO4:Develop the knowledge of sequence and series of functions.	PSO1	U
				• CO5:Understand functions of several variables.	PSO1	AN
PGMC	Ordinary Differential Equations	Local , Regional, National & Global	Latest reference needed for higher level concepts	 CO1:Obtain the solutions of ordinary differential equations 	PSO1	U

				• CO2:Evaluate the special functions.	PSO2	AP
				• CO3:Analyze the behavior of the solutions of the ODE.	PSO1 PSO2	AP
				• CO4:Discuss the properties of boundary value problems.	PSO1,2,4	AP
				• CO5:Solve the system of nonlinear equations.	PSO1,4	AP
PGMD	Advanced Graph Theory	Local , Regional, National & Global	Application Oriented topics were added	CO1:Analyze the automorphism and operations on graphs.	PSO1	U
				 CO2:Discuss the characterization, centers and centroids of trees. 	PSO1	U

				• CO3:Find the independent sets and matchings of graphs, Eulerian and Hamiltonian graphs.	PSO1,2	U,AN
				 CO4:Color the graphs and find the chromatic polynomial. 	PSO1,4	AP
				CO5:Interpret the planar and non-planar graphs.	PSO1,2	АР
PGME1	Advanced Numerical Analysis	Local , Regional, National & Global	Latest reference needed for higher level concepts	CO1:Solve transcendental and polynomial equations	PSO1	U
				• CO2:Determine the solution of linear equations.	PSO1	АР
				CO3:Evaluate the higher order	PSO1,4	AP

				interpolation.		
				• CO4:Estimate the numerical differentiation and integration.	PSO1	U
				• CO5:Interpret the methods of solving integration numerically.	PSO1,3	AP
PGMG	Partial Differential	Local , Regional,	To know about higher	• CO1:Classify the PDE.	PSO1	U
	Equations	National & Global	nethod and its application in Heat, Wave Equation.	CO2:Apply Charpit's and Jacobi's method for solving PDE.	PSO1	U
				CO3:Solve second order and higher order PDE.	PSO1	U
				• CO4:Evaluate non Linear equations of the second order.	PSO1,4	AP

				CO5:Compute boundary value PSO1,3 problems.	АР
PGMH	PGMH Classical Dynamics Local , Regional, National & ab Global To ab Global Yes Global Secondary (Secondary (Seco	To get the knowledge about mathematical concepts in Classical version.	CO1: Analyze the mechanical system of particles.	AN	
				 CO2: Solve the Lagrange's equations of motion PSO1 for the set of generalized coordinates. 	U
			 CO3: Apply Lagrange's PSO1 equations on various functions. 	AP	
				 CO4: Interpret Hamilton's PSO2 equations and its principles. 	U

				 CO5:Retrieve Hamilton – Jacobi Equation. 	PSO1	AP
PGME2 F	Fuzzy sets and its Applications	Local , Regional, National & Global	Kecent Trend of Knowledge	• CO1: Discuss the properties and extension principles of fuzzy sets.	PSO1,2,3,4,5	KN,CN
				• CO2: Apply the mathematical operations on fuzzy sets.	PSO1,3,4	KN,EN
				• CO3:Construct the arithmetic operations on fuzzy numbers.	PSO1,4	CN,EN
				• CO4: Interpret the relations on fuzzy sets.	PSO1,2,3,4	KN,AN
				CO5: Analyze fuzzy concepts in decision making	PSO2,3,4	AN,EN

				problems.		
PGMI	Measure and Local , Regional Integration National & Global	Local , Regional, National & Global	Accal, Regional, National & GlobalTo get the Knowledge about concepts of Integration Measures.	• CO1: Find the Lévesque measure of measurable sets.	PSO2,5	KN,CN
				• CO2: Discuss the integration of non-negative functions.	PSO2,5	KN,CN,AN
				• CO3: Analyze abstract measure spaces.	PSO2,4,5	CN,AN
			 CO4:Demonstrate Hahn decomposition theorem and signed measure. 	PSO2,5	CN,AN	
				• CO5: Compute product measure.	PSO2,5	KN,EN
PGMJ	Topology	Local , Regional, National & Global	To get the Knowledge of Analysis in advance	• CO1: Analyze the fundamental concepts of general	PSO1,2	U,KN,AN,AP

				topology.		
				• CO2: Determine the types of topological spaces and their properties.	PSO2	U,KN,AN
				• CO3: Discuss Uryzohn's lemma and the Tietze Extension Theorem.	PSO1,2,4	U,KN,AN,AP
				• CO4: Demonstrate Tychonoff theorem	PSO2,4	U,AN,AP,KN
				CO5:Compute the complete and compactness in metric spaces.	PSO 2,4	U,AN,AP,KN,E
РСМК	Integral Equations and Transforms	Local , Regional,	To get the knowledge about	• CO1:Solve the linear integral equations.	PSO1	E,AP

		National & Global	Mathematical methods to solve problems.	 CO2:Find the solutions of Volterra and Fredholm integral equations. 	PSO1,2	C,E
				 CO3:Demonstrate the variational problems on moving boundaries and fixed boundaries. 	PSO3	KN,C
				• CO4: Evaluate the Fourier transform , finite sine and cosine transforms.	PSO1,2,3	U,KN,AP
				• CO5: Apply Fourier transform in initial and boundary value problems.	PSO1,2,3	U,KN,AP
PGME3	Mathematical Modeling	Local , Regional,	To study the mathematical models and apply them in real life problems	• CO1: Create models on linear growth	PSO1,2,3,4	U,KN,AP

		National & Global		and decay of any system.		
				 CO2:Form mathematical modeling in epidemics in population. 	PSO3,4	U,KN,E
				• CO3:Design mathematical modelling in any type of motions.	PSO1,3,4	U,KN,C,AN
				 CO4:Solve problems in dynamics and genetics using modeling. 	PSO2,3	U,E
				• CO5: Demonstrate various real life situations through graphs.	PSO1,3,4,5	U,CN,KN
PGME4	Optimization Techniques	Local , Regional, National & Global	Recent development and its	• CO1: Write the algorithms in		

			Applications in research.	integer programming problem.	PSO1,3	KN,C
				• CO2: Apply the OR techniques in various models.	PSO1,4	CN,E
				• CO3: Analyze the problems on decision theory and game theory.	PSO3,4	CN,AN
				• CO4: Optimize solutions of inventory models.	PSO3,4	EN,AN,AP
				• CO5: Interpret the concepts of non-linear programming problems.	PSO2	AN,AP
PGML	Functional Analysis	Local , Regional, National & Global	To get the knowledge of Analysis in advance.	• CO1: Disuss the concept of normed linear spaces, dual	PSO2,4	U,KN,AN

				spaces, weak convergence.		
				• CO2: Apply the idea of the Hahn Banach theorem and open mapping theorem.	PSO2,3,4	U,KN,AN,E
				• CO3: Analyze linear operators on Hilbert space.	PSO2,3,4,5	U,KN,AN
				• CO4:Evaluate orthonormal basis.	PSO2,4	E,AN
				• CO5: Demonstrate the commutative Banach algebras.	PSO 1,2,3	U,AN,C
PGMM	Probability Theory	Local , Regional, National & Clobal	Advancement of the application of fluid dynamics	• CO1:Interpret the field and σ - fields	PSO1,3	U,CN
		Giobai	uynamics	• CO2: Analyze the		

				probability spaces.	PSO3	CN,AN
				• CO3: Apply the concepts of random variables and distributions.	PSO2	U,KN,CN
			• CO4: Describe the ideas of expectation and characteristic functions.	PSO4	U,KN,CN	
				• CO5: Demonstrate the convergence of random variables.	PSO1,2,3	KN,CN
PGMN	PGMN Fluid Dynamics Local , Advancement of Regional, application of fl National & dynamics Global	Advancement of the application of fluid dynamics	• CO1:Discuss the behavior of fluids in motion.	PSO1,2	U,C,AN	
			CO2: Demonstrate the changes in flow when sphere of cylinder is introduced.	PSO1,2,3	CN,AN	
				• CO3: Estimate the applications of two dimensional flow.	PSO3,4	CN,EN

				• CO4:Apply the stress components on viscous flow.	PSO3,4	CN, E
				 CO5:Solve <pre>problems in viscous flow and describe the energy dissipation.</pre> 	PSO 2,4	EN,AP
PGME5	Differential Geometry and Tensors	Local , Regional, National & Global	To apply the notion of geodesics on surfaces and their properties	• CO1:Discuss the concept of graphs and level sets-vector fields.	PSO1,2	U,KN,AN
				• CO2:Analyze surfaces and vector field on surfaces.	PSO 2	U,KN,AN
				• CO3:Apply the properties of geodesics.	PSO1,2	U.KN,AN
				CO4:Interpret the scope of developable,	PSO1,2	U,KN,E

		minimal and ruled		
		surfaces.		
		• CO5:Compute the		
		compactness and	DSO1 05	Π ΚΝ ΔΝ
		completeness of	PS01,.2,5	0,111,711
		surfaces.		